Colloidal nanoparticles of Ln3+-doped LaVO4: energy transfer to visible- and near-infrared-emitting lanthanide ions.

نویسندگان

  • Jan W Stouwdam
  • Mati Raudsepp
  • Frank C J M van Veggel
چکیده

Colloidal, organic solvent-soluble Ln3+-doped LaVO4 nanoparticles have been synthesized by a precipitation reaction in the presence of (C18H37O)2PS2- as ligand, that coordinates to the surface of the nanoparticles. The materials are well soluble in chlorinated solvent such as chloroform. Energy transfer of excited vanadate groups has been observed for Ln3+ ions that emit in the visible and the near-infrared (Eu3+, Tm3+, Nd3+, Er3+, Ho3+, Dy3+, Sm3+, Pr3+), thus making it a very generic sensitization mechanism. The LaVO4 nanoparticles have a different crystal structure than bulk LaVO4 ones (xenotime instead of monazite), similar to YVO4 nanoparticles. This xenotime crystal structure results in a more asymmetric crystal field around the Ln3+ ions that is advantageous to their luminescence, for it increases the radiative rate constant, thus reducing quenching processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly Emitting Near-Infrared Lanthanide “Encapsulated Sandwich” Metallacrown Complexes with Excitation Shifted Toward Lower Energy

Near-infrared (NIR) luminescent lanthanide complexes hold great promise for practical applications, as their optical properties have several complementary advantages over organic fluorophores and semiconductor nanoparticles. The fundamental challenge for lanthanide luminescence is their sensitization through suitable chromophores. The use of the metallacrown (MC) motif is an innovative strategy...

متن کامل

Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission.

Nanoparticles doped with lanthanide ions exhibit stable and visible luminescence under near-infrared excitation via a process known as upconversion, enabling long-duration, low-background biological imaging. However, the complex, overlapping emission spectra of lanthanide ions can hinder the quantitative imaging of samples labeled with multiple upconverting probes. Here, we use combinatorial sc...

متن کامل

Multispectral Emissions of Lanthanide-Doped Gadolinium Oxide Nanophosphors for Cathodoluminescence and Near-Infrared Upconversion/Downconversion Imaging

Comprehensive imaging of a biological individual can be achieved by utilizing the variation in spatial resolution, the scale of cathodoluminescence (CL), and near-infrared (NIR), as favored by imaging probe Gd₂O₃ co-doped lanthanide nanophosphors (NPPs). A series of Gd₂O₃:Ln3+/Yb3+ (Ln3+: Tm3+, Ho3+, Er3+) NPPs with multispectral emission are prepared by the sol-gel method. The NPPs show a wide...

متن کامل

The preferred upconversion pathway for the red emission of lanthanide-doped upconverting nanoparticles, NaYF4:Yb(3+),Er(3.).

Lanthanide-doped upconverting nanoparticles (UCNPs, NaYF4:Yb(3+),Er(3+)) are well known for emitting visible photons upon absorption of two or more near-infrared (NIR) photons through energy transfer from the sensitizer (Yb(3+)) to the activator (Er(3+)). Of the visible emission bands (two green and one red band), it has been suggested that the red emission results from two competing upconversi...

متن کامل

High Resolution Fluorescence Imaging of Cancers Using Lanthanide Ion-Doped Upconverting Nanocrystals

During the last decade inorganic luminescent nanoparticles that emit visible light under near infrared (NIR) excitation (in the biological window) have played a relevant role for high resolution imaging of cancer. Indeed, semiconductor quantum dots (QDs) and metal nanoparticles, mostly gold nanorods (GNRs), are already commercially available for this purpose. In this work we review the role whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 21 15  شماره 

صفحات  -

تاریخ انتشار 2005